
FIXED POINT THEOREMS FOR 

NON-LIPSCHITZIAN MAPPINGS 

OF ASYMPTOTICALLY NONEXPANSIVE TYPE t 

BY 

W. A. KIRK 

ABSTRACT 

Let X be a Banach space, K a nonempty, bounded, closed and convex subset 
of X, and suppose T : K-+ K satisfies: 

(*) for each xE K, lim supl..,~ o {supyeK [ [Ir'x- Tiy II- II x - y  111} z 0 

if TNis continuous for some positive integer N, and ifeither (a) Xis uniformly 
convex, or (b) K is compact, then Thas a fixed point inK.Theformergener- 
alizes a theorem of Goebel and Kirk for asymptotically nonexpansive map- 
pings. These are mappings T: K---~ K satisfying, for i sufficiently large, 
IIr'x--r' ll z k, llx-~11, x,r~/~, where ki---~ 1 as i---~ oo. The precise 
assumption in (a) is somewhat weaker than uniform convexity, requiring only 
that Goebel's characteristic of convexity, e0 (X), be less than one. 

Let  X be a Banach space, K c X.  A mapping T :  K --* K is called asymptotically 
nonexpansive on K [5] if there exists a sequence {k~} o f  constants  such that  

ks -~ 1 as i ~ oo and for which 

JrT'x--T'yH<=k, llx--yll,  x, y e K ,  i > N  o. 

It  was proved in [5]  that  if X is uniformly convex and if  K is bounded,  closed, and 

convex, then such a mapping must  have a fixed point. This is, o f  course, a natural  

generalization o f  the fixed point  theorem o f  Browder-G6hde-Kirk  [1], [8],  [11] 

for  nonexpansive mapping.  

Our  purpose in this paper  is twofold.  First we substantially weaken the 

assumption o f  asymptotic  nonexpansiveness o f  T by replacing it with an as- 
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sumption, (2) below, which may hold even if none of  the iterates of  T is Lip- 

schitzian. Although we assume that at least one of  its iterates is continuous, the 

mapping itself need not be. In addition, we obtain one of  our results in a class of  

spaces which properly includes the uniformly convex spaces. 

Our second objective is to obtain an analogous result for compact convex K 

with no underlying assumptions on the norm of the space. Again the assumption 

is that T: K - .  K satisfy (2) and T N be continuous for some N. This theorem 

provides a new result even for asymptotically nonexpansive mappings, and 

because T is not assumed continuous it does not follow directly from the 

Schauder theorem. 

A generalization of  the result of [5] which retains the feature that iterates of  T 

are Lipschitzian but only requires that these Lipschitz constants be sufficiently 

near one (while perhaps being bounded away from one) is given in [61 . It is 

assumed that X is uniformly convex in [61, but this result itself has subsequently 

been generalized in [7] to the wider class of  spaces considered below. 

The modulus of convexity of  X is the function 5: [0,2] -~ [0, 1] defined by 

5(s) = inf[1 - �89  + yll: x ,y~X,  I]xll, Hy[I <= 1, [ Ix-  yll >= sl. 

Let 

8o(X) = sup (8: 5(s) = 0}. 

The number eo(X ) is called the characteristic of convexity of X [4]. In Theorem 1 

we assume X satisfies so(X) < 1. It is known (see Goebel [4]) that this implies X 

is uniformly non-square, hence reflexive [101. Also, X is uniformly convex [21 if 

&(s) > 0 whenever s > 0; hence so(X) = 0 for such spaces and so Theorem 1 

holds for X uniformly convex. 

It is known (see [91 , [121 ) that the modulus of  convexity is continuous and 

increasing on leo, 2) and moreover [13], [14], the inequalities 

rl x II d, IJ Y II d, II x -  y II 
imply 

(1) �89 x + y ]l ~ (1 - 5(s/d))d. 

For x e X, S(x; r) will denote the closed spherical ball (y e X:  II x - y I[ =< r). 

In each of  our theorems we assume T: K ~ K satisfies: 

(2) for each xeK,  lim sup ( sup  Ill Tix - T i y H - I I x - y l l ] }  <_o. 
i~QO yE K 
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We compare this assumption with asymptotic nonexpansiveness in the remark 

following the proof  of  Theorem 2. 

TrmOREM 1. Let X be a Banach space for which 8 0 = eo(X ) < I and let 

K ~ X be nonempty, bounded, closed and convex. Suppose T: K---, K has the 

property that T N is continuous for some positive integer N, and suppose T satis- 

fies (2). Then T has a fixed point in K. 

THEOREM 2. Let K be a nonempty, compact and convex subset of the Banach 

space X.  Suppose T: K ~ K has the property that T ~v is continuous for some 

positive integer N, and suppose T satisfies (2). Then T has a fixed point in K. 

The proof  of  Theorem 1 follows closely that of  Goebel and Kirk in 16 1 hinging 

on properties of  the modulus of  convexity of  X, while Theorem 2 requires a more 

topological argument. 

PRoof oF THEOREM 1. Let x e K be fixed. As seen in I-5], 1-6] there exists a 

number Po = po(X) >= 0 which is minimal with respect to the property: for each 

e > 0 there exists an integer k such that 

Letting 

K 63 (~=[~k S(Tlx; Po+ e ) ) #  ~. 

C, = I,.J S(T*x; Po + e) , 
k = l  i = k  

then for e > 0 the set C, is nonempty, bounded and convex; hence by reflexivity 

of  X the closure C~ of C~ is weakly compact and 

Now let z ~ C, and let 

C = 1"1 ( (7~63K)# j~. 
e>O 

d ( z )  = lim sup tl z -  T'z il" 
i--# oo 

Suppose po(x) = 0. Then clearly Tax --, z as n --, oo. Let r />  0 and using (2) 

choose M so that i > M implies 

sup Ill T'z - T'y II - II z - y II] < �89 
y*K 

Given i > M, since T a x  ~ z there ex i s t s  m > i such that H T ' x  - z II <= and 
II Tm-'x - z II -< }ri. Thus if i > M, 
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IJz - T'z II =< IIz - Tm~ll + II T ' ~  - T'z II 

=<_ IIz - T=~ If § II T'z - T i ( T m - ' x ) ] 1  - I1~ - T ' - ' ~  II 

+ II z - T ' - ' x  II 

__ ~ + sup Ell T'~ - T'y II - II z - y Ill + ~ 
yEK 

< r / .  

This proves T"z  ~ z as n -* 0% that is, d(z)  = 0. But d(z)  = 0 implies T m z  ~ z 

as i -~ ~ and with continuity of  T n this yields T n z  = z.  Thus 

(3) T z  = T ( T m z )  = T m + l z ~ z  as i ~  oo, 

and T z  = z.  Therefore we may assume po(x) > 0 and d(z)  > 0. (In fact, we may 

assume this f o r  a n y  x, z z K.) 

Now let 5 > 0, a < d(z).  By the definition of  Po there exists an integer N* such 

that if i ~ N* then 

IF z -  r'x[I---Po + 5, 

and by (2) there exists N** such that if i ~ N** then 

sup Eli y i z  - T ' y  II - I 1~  - y 111 =< 5. 
y6K 

Select j so that j ->_ N** and so that 

[I z - TJz  I Ik  d(z) - s. 

Thus if i - j > _ - N * ,  

II r , z  - r ' x  II = 

< 

{ll T j z  - T J ( T ' - g x ) I I  - II z - T i - J x  II) + II z - T ' - ' x  II 

5 + (go + 5) 

= Po + 2e. 

Letting m = �89 + TJz )  we have by property (1) of the modulus of convexity, 

lira- Vxll < (~ = \ p o + 2 5 ! ! ( p o + 2 5  ), i _ ~ N * + j .  

By the minimality of  Po this implies 

d ( z )  - 5 
p o ~  1 - - ~ ( ~ ) ) ( p o ' I - 2 ~ ' ) ; .  

letting 5 --* O, 
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This implies 1 - 6 (d(z)/Po) > 1 and hence cS(d(z)/Po) = 0. I t  follows f rom the 

definition o f  80 that d(z)/po < ~o. Hence 

a(z) __< .oO.(x) 

and letting d(x) = lira sup,~ ~o II x - T'x II we have po(X) <= d(x) so 

(4) d(z) <- %d(x). 

Also notice that II z - x II = d(x) + po(X) <= 2d(x) 
The p roof  is completed almost precisely as in [6]. We include the details for 

completeness. 

Fix xo ~ K and define the sequence {x.} by x, + x = z(x.), n = 0, 1, 2, . . . ,  where 

z(x.) is obtained f rom x. in the same manner as z(x) f rom x. I f  for  any n we have 

p(x,,) = 0 then, as seen above, Tx,,+l = x .+l .  Otherwise we have by (4) 

It x .+ ,  - x. tl --< 2d(x,) < 2<8o)"d(xo) 

and since eo < 1, {x,} is a Cauchy sequence. Therefore there exists y ~ K such that 

x n ~ y  as n ~ . A l s o  

Ily-T'yll <= I l y - x .  ll + I I ~ . - r ' x . l l  + I 1 V x . - r ' y l l  

---- II y -  x. II + 11 x . -  Z'x.  II + [11Z'x.-  T'y 11-11 x . -  y I1] + II x . -  y II. 
Thus 

d(y) = lim sup II y - T'y I! 
i.-~ oO 

< lim sup 211x.-  y 11 + lira sup II x . -  Z'x. tl 
i ~ o o  i ~ o o  

+ lira sup [11Z'x. - T'y 11 - 11 x. - y I11 
i.-+ cO 

_< d(~.) + 211 x . -  y II 

Since x.  ~ y and d(x.) --.. 0 as n ~ 0% this implies d(y) = 0. But as seen before (3) 

this implies Ty  = y. 

PROOF OF THEOREM 2. Use Zorn 's  lemma to obtain a subset H of  K which 

is minimal with respect to being nonempty, closed, convex, and satisfying: 

(5) I f  x ~ H  and w is a subsequential limit of  {T"x}, then w e l l .  

Now let Ht~ - H be minimal with respect to being nonempty,  closed, convex, 

and satisfying: 
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(6) If  x e HN and w is a subsequential limit of {T x}~ = 1, then w e Hm 

If  diam (HN) = 0 then clearly HN consists of  a single point which is fixed under 

the mapping F = T N. To see that this must be the case, suppose diam (HN) > 0. 

Note that if 

S = {z e HN: z is a subsequential limit of {F'x} for some fixed x ~ HM} 

then F:  S ~ S. Moreover, since F is continuous, S is closed. Thus we may select a 

minimal, nonempty, closed subset SN of  H~ which is invariant under F, and 

because F is continuous, F maps S~ onto SN. As before, if diam (SN) = 0 then S~ 

consists of  a single point which is fixed under F. On the other hand, if 61 

= diam(SN) > 0 then, as shown by De Marr [3], there exists a number r I < 61 

such that for some x e HN, sup {11 x - z II: z ~ s~}  __< r ~  Let  

CN = {XEHN: SN C B(X; rl) } 

where B(x; rl) denotes the closed ball centered at x with radius r t. Clearly C~ is 

nonempty, closed, and convex and moreover, because diam (SN) = ~ > rl and 

CN cannot contain points of SN whose distance exceeds r~, it follows that C~ is a 

proper subset of HN. 

ASSERaaON. CN satisfies (6). To see this, let z e CN and suppose limi_,~F"'z=w. 

We must show w ~ CN. If  y E SN then, since F maps SN onto SN, for each i there 

exists un, e SN such that y = F n ~un ~. Thus 

ti w - y I[ < I[ w - F ~'z I[ + I[ F"'z - F n 'u,, [1" 

Using (2), 

lira sup {1I ~ - ~ ' z  II + I1 I~' ,~ - F~'u~,  I1} 
It'-* o0 

< l im sup {l lF"z - F"u , ,  II - II z - u / I }  + l im sup II z - u , ,  II 
[-~OD i " ~ ~  

< r I 

and this implies [[w - yl[ z r~. Since ~ n ~  by (6), this proves that weC~.  

The assertion along with the other properties of  C~ shows that the minimality 

of  HN is contradicted if 6~ > 0; thus it must be the case that 61 = diam (HN) = 0. 

Therefore we have established the existence of a point xo ~ H such that TNxo = Xo. 

To complete the proof, suppose Txo ~ xo and let S = {Xo, Txo, ..., TM-lXo}. 

Then if  6z = diam(S), as before there exists r2 < 62 such that for some x e l l ,  

sup {11 x - z I1: z ~ s }  __< r~. Let 
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C = {x ~ H:  S c_ B(x;  r2) }. 

Then C is nonempty, closed, convex, and moreover C is a proper subset of  H. 

By following precisely the argument of  the assertion (replacing F with T and 

removing the subscripts N) one sees that C satisfies (5), contradicting the mini- 

mality of H. Therefore T x  o = x o . 

REMARK. If  K is bounded and if T:  K ~ K is asymptotically nonexpansive in 

the sense of  [5] then T satisfies (2). 

PROOF. If  T is asymptotically nonexpansive in the sense of  [5] then there 

exists a sequence {k,} of constants such that k, ~ 1 as i ~ oo and for which 

t l Z * x - Z i y [ l < k ,  l l x - y l l ,  x , y ~ K ,  i > N o .  

Thus 

and 

II Z 'x  - Z ' y  II - I1 x - y II ~ ( k , -  1)11 x - y II ~1  k, - 11 ~(g)  

l 
lira sup{ sup Ill Tix  - T iy  ]1 - I I  x - y [I] } =< lim I k i -  11 ~(K) = 0. 

Theorem 2 thus has the following corollary. 

COROLLARY. Suppose K is compact  and convex and suppose T:  K ~ K  

satisfies fo r  i > N o, 

Ilr'x-T'Yll<=g,!lx-Yll, x,y~g, 

where k ~  1 as i ~ oo. Then  T has a f i xed  point  in K.  

The converse of  the remark is not true. Simple examples of real-valued functions 

f on the unit interval can be constructed which satisfy (2) (that is, such thatfn(x) -~0 

uniformly as n ~ oo) but for wh ich f  ~ is not Lipschitzian for any integer i. 

REFERENCES 

1. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Prec. Nat. Aead. 
Sci. U. S. A. 54 (1965), 1041-1044. 

2. J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396--414. 
3. R. De Marr, Common fixed points for commuting contraction mappings, Pacific J. Math. 

13 (1963), 1139-I 141. 
4. K. Goebel, Convexity o f  balls and fixed-point theorems for mappings with nonexpansive 

square, Compositio Math. 22 (1970), 269-274. 
5. K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, 

Prec. Amer. Math. Soc. 35 (1972), 171-174. 
6. K. Goebel and W. A. Kirk, A fixed point theorem for mappings whose iterates have uniform 

Lipschitz constant, Studia Math. 47 (1973), 135-140. 



346 W . A .  KIRK Israel I. Math., 

7. K. Goebel, W. A. Kirk, and R. L. Tilde, Uniformly Lipschitzianfamilies of  transformations 
in Banach spaces (to appar). 

8. D. Gfhde, Zumprinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258. 
9. V. I. Gurarii, On the differential properties of  the modulus of  convexity in a Banach space 

(in Russian), Mat. Issled. 2 (1967), 141-148. 
10. R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550. 
11. W. A. Kirk, A fixed point theorem for mappings which do not increases distances, Amer. 

Math. Monthly 72 (1965), 1004-1006. 
12. Ju. I. Milman, Geometric theory of  Banach spaces I1, Geometry of the unit ball, Uspehi 

Mat, Nauk 26 (1971), 73-150. 
13. Z. Opial, Lecture notes on nonexpansive and monotone mappings in Banach spaces, 

Center for Dynamical Systems, Brown University, Providence, R. I., 1967. 
14. H. Schaefer, Ober die Methode sukzessiver Approximationen, Jber, Deutsch, Math.-Verein. 

59 (1957), 131-140. 

DEPARTMENT OF MATHEMATICS 
T~E UNt~RSITY OF IOWA 

IOWA CITY, IOWA, U. S. A. 


